Exponential Moving Average Der Exponential Moving Average Der Exponential Moving Average unterscheidet sich von einem Simple Moving Average sowohl nach Berechnungsmethode als auch in der gewichteten Preislage. Der Exponential Moving Average (verkürzt auf die Initialen EMA) ist effektiv ein gewichteter gleitender Durchschnitt. Mit der EMA ist die Gewichtung so, dass die letzten Tage Preise mehr Gewicht als ältere Preise gegeben werden. Die Theorie dahinter ist, dass jüngere Preise als wichtiger als ältere Preise angesehen werden, zumal ein langfristiger einfacher Durchschnitt (zum Beispiel ein 200-tägiger Tag) gleiches Gewicht auf Preisdaten hat, die über 6 Monate alt sind und gedacht werden könnten Von so wenig veraltet. Die Berechnung der EMA ist ein wenig komplexer als die Simple Moving Average, hat aber den Vorteil, dass eine große Aufzeichnung von Daten, die jeden Schlusskurs der letzten 200 Tage abdeckt (oder aber viele Tage betrachtet werden) nicht beibehalten werden muss . Alles was Sie brauchen sind die EMA für den Vortag und den heutigen Schlusskurs, um den neuen Exponential Moving Average zu berechnen. Berechnen des Exponenten Anfänglich muss für die EMA ein Exponent berechnet werden. Um zu beginnen, nehmen Sie die Anzahl der Tage EMA, die Sie berechnen wollen und fügen Sie ein, um die Anzahl der Tage, die Sie in Erwägung ziehen (zum Beispiel für einen 200-Tage gleitenden Durchschnitt, fügen Sie einen zu 201 als Teil der Berechnung zu erhalten). Nennen Sie diese Tage1. Dann, um den Exponenten zu erhalten, nehmen Sie einfach die Zahl 2 und teilen sie durch Days1. Zum Beispiel wäre der Exponent für einen 200 Tage gleitenden Durchschnitt: 2 201. Das entspricht 0,01 Vollberechnung, wenn der exponentielle gleitende Durchschnitt Nachdem wir den Exponenten erhalten haben, brauchen wir nur noch zwei weitere Informationen, um die vollständige Berechnung durchführen zu können . Die erste ist gestern Exponential Moving Average. Wir gehen davon aus, dass wir das schon wissen, wie wir es gestern berechnet haben. Allerdings, wenn Sie arent bereits Kenntnis von gestern EMA, können Sie durch die Berechnung der Simple Moving Average für gestern beginnen und verwenden diese anstelle der EMA für die erste Berechnung (dh heute Berechnung) der EMA. Dann können Sie morgen die EMA verwenden, die Sie heute berechnet haben, und so weiter. Die zweite Information, die wir brauchen, ist der heutige Schlusskurs. Wir gehen davon aus, dass wir den heutigen 200 Tage Exponential Moving Average für eine Aktie oder Aktie berechnen wollen, die eine vorhergehende EMA von 120 Pence (oder Cent) und einen aktuellen Tages-Schlusskurs von 136 Pence hat. Die vollständige Berechnung ist immer wie folgt: Heutige Exponential Moving Average (aktuelle Tage Schlusskurs x Exponent) (vorherige Tage EMA x (1- Exponent)) Also, mit unserem Beispiel Zahlen oben, heute 200 Tage EMA wäre: (136 x 0,01 ) (120 x (1- 0,01)) Dies entspricht einer EMA für heute von 120.16.Exponential Smoothing Explained. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. Wenn die Menschen zuerst den Begriff Exponential Smoothing begegnen sie denken, dass klingt wie eine Hölle von viel Glättung. Was Glättung ist. Sie beginnen dann eine komplizierte mathematische Berechnung vorstellen, die wahrscheinlich erfordert einen Abschluss in Mathematik zu verstehen, und hoffe, es ist eine eingebaute Excel-Funktion verfügbar, wenn sie es jemals tun müssen. Die Wirklichkeit der exponentiellen Glättung ist weit weniger dramatisch und weit weniger traumatisch. Die Wahrheit ist, ist exponentielle Glättung eine sehr einfache Berechnung, die eine ziemlich einfache Aufgabe erfüllt. Es hat nur einen komplizierten Namen, weil was technisch passiert als Folge dieser einfachen Berechnung ist eigentlich ein wenig kompliziert. Um zu verstehen, exponentielle Glättung, hilft es, mit dem allgemeinen Konzept der Glättung und ein paar andere gängige Methoden, um Glättung zu erreichen beginnen. Was ist Glättung Glättung ist ein sehr häufiger statistischer Prozess. Tatsächlich begegnen wir regelmäßig geglättete Daten in verschiedenen Formen in unserem Alltag. Jedes Mal, wenn Sie einen Durchschnitt verwenden, um etwas zu beschreiben, verwenden Sie eine geglättete Zahl. Wenn Sie darüber nachdenken, warum Sie einen Durchschnitt verwenden, um etwas zu beschreiben, werden Sie schnell verstehen, das Konzept der Glättung. So erlebten wir zum Beispiel den wärmsten Winter. Wie können wir das quantifizieren? Nun beginnen wir mit Datensätzen der täglichen hohen und niedrigen Temperaturen für den Zeitraum, den wir Winter für jedes Jahr in der aufgezeichneten Geschichte nennen. Aber das lässt uns mit einer Menge von Zahlen, die um einiges herumspringen (es ist nicht wie jeden Tag dieser Winter war wärmer als die entsprechenden Tage aus allen früheren Jahren). Wir brauchen eine Zahl, die alle diese Sprünge aus den Daten entfernt, so dass wir besser vergleichen können einen Winter zum nächsten. Das Entfernen der Sprünge in den Daten heißt Glättung, und in diesem Fall können wir einfach einen einfachen Durchschnitt verwenden, um die Glättung zu erreichen. In der Bedarfsprognose verwenden wir die Glättung, um zufällige Variation (Lärm) aus unserer historischen Nachfrage zu entfernen. Dies ermöglicht es uns, die Bedarfsmuster (vor allem die Trend - und Saisonalität) und die Nachfrage, die zur Abschätzung der zukünftigen Nachfrage genutzt werden können, besser zu identifizieren. Der Lärm in der Nachfrage ist das gleiche Konzept wie das tägliche Springen der Temperaturdaten. Nicht überraschend, die häufigste Art und Weise Menschen entfernen Rauschen aus der Nachfrage Geschichte ist es, einen einfachen Durchschnitt verwenden oder genauer, ein gleitender Durchschnitt. Ein gleitender Durchschnitt verwendet nur eine vordefinierte Anzahl von Perioden, um den Durchschnitt zu berechnen, und diese Perioden bewegen sich mit der Zeit. Zum Beispiel, wenn Im mit einem 4-Monats-gleitenden Durchschnitt, und heute ist der 1. Mai, Im mit einem Durchschnitt der Nachfrage, die im Januar, Februar, März und April aufgetreten. Am 1. Juni werde ich die Nachfrage von Februar, März, April und Mai nutzen. Gewichteter gleitender Durchschnitt. Wenn wir einen Durchschnitt verwenden, wenden wir die gleiche Wichtigkeit (Gewicht) auf jeden Wert im Datensatz an. Im gleitenden 4-Monatsdurchschnitt stellte jeder Monat 25 des gleitenden Durchschnitts dar. Bei der Verwendung der Nachfragegeschichte, um die zukünftige Nachfrage (und insbesondere die zukünftige Entwicklung) zu prognostizieren, ist es logisch, zu der Schlussfolgerung zu kommen, dass die jüngere Geschichte eine größere Auswirkung auf Ihre Prognose haben möchte. Wir können unsere gleitende durchschnittliche Berechnung anpassen, um verschiedene Gewichte auf jede Periode anzuwenden, um die gewünschten Ergebnisse zu erzielen. Wir geben diese Gewichte als Prozentsätze an, und die Summe aller Gewichte für alle Perioden muss zu 100 addieren. Wenn wir also entscheiden, dass wir 35 als Gewicht für die nächste Periode in unserem 4-monatigen gewichteten gleitenden Durchschnitt anwenden wollen, können wir Subtrahieren 35 von 100 zu finden, wir haben 65 übrig geblieben, um über die anderen 3 Perioden zu teilen. Zum Beispiel können wir am Ende mit einer Gewichtung von 15, 20, 30 und 35 für die 4 Monate (15 20 30 35 100). Exponentielle Glättung. Wenn wir auf das Konzept der Anwendung eines Gewichtes auf die jüngste Periode (wie z. B. 35 im vorigen Beispiel) und das Verbreiten des Restgewichts (berechnet durch Subtrahieren des letzten Periodengewichts von 35 von 100 auf 65) zurückgehen, haben wir Die Grundbausteine für unsere exponentielle Glättungsberechnung. Der Steuereingang der Exponentialglättungsberechnung ist als Glättungsfaktor (auch Glättungskonstante genannt) bekannt. Es handelt sich im Wesentlichen um die Gewichtung für die jüngsten Zeiträume Nachfrage. Wenn wir also 35 als Gewichtung für die letzte Periode in der gewichteten gleitenden Durchschnittsberechnung verwendeten, könnten wir auch 35 als Glättungsfaktor in unserer exponentiellen Glättungsberechnung verwenden, um einen ähnlichen Effekt zu erhalten. Der Unterschied zu der exponentiellen Glättungsberechnung ist, dass anstelle von uns auch herauszufinden, wie viel Gewicht auf jede vorhergehende Periode anzuwenden ist, der Glättungsfaktor verwendet, um das automatisch zu tun. Also hier kommt der exponentielle Teil. Wenn wir 35 als Glättungsfaktor verwenden, beträgt die Gewichtung der letzten Periodennachfrage 35. Die Gewichtung der nächsten letzten Periodennachfrage (der Zeitraum vor dem jüngsten) beträgt 65 von 35 (65 ergibt sich aus der Subtraktion von 35 von 100). Dies entspricht 22,75 Gewichtung für diesen Zeitraum, wenn Sie die Mathematik. Die nächste Nachfrage nach der letzten Zeit wird 65 von 65 von 35 sein, was 14,79 entspricht. Der Zeitraum davor wird gewichtet mit 65 von 65 von 65 von 35, was 9,61 entspricht, und so weiter. Und dies geht zurück durch alle Ihre früheren Perioden den ganzen Weg zurück zum Anfang der Zeit (oder der Punkt, an dem Sie begonnen haben, exponentielle Glättung für das jeweilige Element). Youre wahrscheinlich denken, dass aussehen wie eine ganze Menge Mathe. Aber die Schönheit der exponentiellen Glättungsberechnung ist, dass, anstatt zu jeder vorherigen Periode neu berechnen müssen, jedes Mal wenn Sie eine neue Periodenanforderung erhalten, verwenden Sie einfach die Ausgabe der exponentiellen Glättungsberechnung aus der vorherigen Periode, um alle vorherigen Perioden darzustellen. Sind Sie noch verwirrt Dies wird mehr Sinn machen, wenn wir die tatsächliche Berechnung betrachten Normalerweise beziehen wir uns auf die Ausgabe der exponentiellen Glättung Berechnung als die nächste Periode Prognose. In Wirklichkeit braucht die endgültige Prognose etwas mehr Arbeit, aber für die Zwecke dieser spezifischen Berechnung werden wir sie als die Prognose bezeichnen. Die exponentielle Glättungsberechnung ist wie folgt: Die letzte Periodenforderung multipliziert mit dem Glättungsfaktor. PLUS Die Prognose der letzten Perioden multipliziert mit (minus Glättungsfaktor). D die letzten Perioden S den Glättungsfaktor, der in dezimaler Form dargestellt ist (also 35 als 0,35 dargestellt werden). F die letzten Periodenprognosen (die Ausgabe der Glättungsberechnung aus der vorherigen Periode). OR (unter Annahme eines Glättungsfaktors von 0,35) (D 0,35) (F 0,65) Es wird nicht viel einfacher als das. Wie Sie sehen können, benötigen wir für die Dateneingaben hier nur die jüngsten Zeiträume und die letzten Prognosezeiträume. Wir wenden den Glättungsfaktor (Gewichtung) auf die letzten Perioden an, die in der gewichteten gleitenden Durchschnittsberechnung dieselbe Weise erfordern. Anschließend legen wir die verbleibende Gewichtung (1 minus Glättungsfaktor) auf die jeweils aktuellsten Perioden an. Da die Prognose der letzten Perioden auf Basis der vorherigen Periodennachfrage und der vorherigen Periodenprognosen erstellt wurde, die auf der Nachfrage nach dem vorherigen Zeitraum und der Prognose für den Zeitraum vor der Prognose beruhte, der auf der Nachfrage für den Zeitraum zuvor beruhte Dass und die Prognose für den Zeitraum vor, dass auf der Grundlage der Zeitraum vor, dass. Gut, können Sie sehen, wie alle vorherigen Perioden Nachfrage sind in der Berechnung dargestellt, ohne tatsächlich zurück und Neuberechnung alles. Und das ist, was fuhr die anfängliche Popularität der exponentiellen Glättung. Es war nicht, weil es einen besseren Job des Glättens als gewogenen gleitenden Durchschnitt machte, war es, weil es einfacher war, in einem Computerprogramm zu berechnen. Und weil Sie didnt brauchen, um darüber nachzudenken, welche Gewichtung früheren Perioden zu geben oder wie viele vorherige Perioden zu verwenden, wie Sie in gewichteten gleitenden Durchschnitt. Und, weil es klang nur kühler als gewichtet gleitenden Durchschnitt. Tatsächlich könnte man argumentieren, dass der gewichtete gleitende Durchschnitt eine größere Flexibilität bietet, da Sie mehr Kontrolle über die Gewichtung früherer Perioden haben. Die Realität ist entweder von diesen können respektable Ergebnisse liefern, also warum nicht mit einfacher und kühler klingen gehen. Exponentielle Glättung in Excel Lets sehen, wie dies tatsächlich in einer Kalkulationstabelle mit realen Daten aussehen würde. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. In Abbildung 1A haben wir eine Excel-Tabelle mit 11 Wochen Nachfrage und eine exponentiell geglättete Prognose aus dieser Nachfrage berechnet. Ive verwendete einen Glättungsfaktor von 25 (0,25 in Zelle C1). Die aktuelle aktive Zelle ist Zelle M4, die die Prognose für Woche 12 enthält. In der Formelleiste sehen Sie die Formel (L3C1) (L4 (1-C1)). Die einzigen direkten Eingaben zu dieser Berechnung sind die vorherigen Periodennachfrage (Zelle L3), die vorherigen Periodenvorhersage (Zelle L4) und der Glättungsfaktor (Zelle C1, dargestellt als absolute Zelle Bezug C1). Wenn wir eine exponentielle Glättungsberechnung starten, müssen wir den Wert für die 1. Prognose manuell stecken. Also in Zelle B4, anstatt eine Formel, haben wir nur in der Nachfrage aus der gleichen Periode wie die Prognose eingegeben. In der Zelle C4 haben wir unsere erste exponentielle Glättungsberechnung (B3C1) (B4 (1-C1)). Wir können dann kopieren Cell C4 und fügen Sie es in den Zellen D4 bis M4, um den Rest unserer prognostizierten Zellen zu füllen. Sie können nun auf eine beliebige Prognosezelle doppelklicken, um zu sehen, dass sie auf der vorherigen Periodenprognosezelle und den vorherigen Periodennachfragezellen basiert. Somit erbt jede nachfolgende exponentielle Glättungsberechnung die Ausgabe der vorherigen exponentiellen Glättungsberechnung. Das ist, wie jede vorherige Periodenanforderung in der letzten Periodenrechnung dargestellt wird, obwohl diese Berechnung nicht direkt auf die vorherigen Perioden bezieht. Wenn Sie Lust bekommen wollen, können Sie Excels Trace Präzedenzfall-Funktion. Klicken Sie dazu auf Cell M4, und klicken Sie dann in der Multifunktionsleiste (Excel 2007 oder 2010) auf die Registerkarte Formeln, und klicken Sie dann auf Vorverfolgung verfolgen. Es wird Verbindungslinien auf die erste Ebene der Präzedenzfälle ziehen, aber wenn Sie auf Trace Precedents klicken, zieht es Verbindungslinien zu allen vorherigen Perioden, um Ihnen die vererbten Beziehungen anzuzeigen. Jetzt können Sie sehen, was exponentielle Glättung für uns getan hat. Abbildung 1B zeigt ein Liniendiagramm unserer Nachfrage und Prognose. Sie sehen, wie die exponentiell geglättete Prognose die meiste Zersiedelung (das Springen um) von der wöchentlichen Nachfrage entfernt, aber dennoch gelingt, dem zu folgen, was ein Aufwärtstrend bei der Nachfrage zu sein scheint. Youll auch bemerken, dass die geglättete Vorhersagelinie tendenziell niedriger als die Nachfrage Linie ist. Dies wird als Trendverzögerung bezeichnet und ist ein Nebeneffekt des Glättprozesses. Jedes Mal, wenn Sie Glättung verwenden, wenn ein Trend vorliegt, wird Ihre Prognose hinter dem Trend zurückbleiben. Dies gilt für jede Glättungstechnik. In der Tat, wenn wir diese Tabellenkalkulation fortsetzen und beginnen Eingabe niedrigeren Nachfrage-Nummern (einen Abwärtstrend) würden Sie sehen, die Nachfrage Linie fallen, und die Trendlinie über sie vor dem Beginn der Abwärtstrend folgen. Thats, warum ich zuvor erwähnt, die Ausgabe aus der exponentiellen Glättung Berechnung, die wir eine Prognose nennen, braucht noch etwas mehr Arbeit. Es gibt viel mehr zu Prognosen als nur Glättung der Beulen in der Nachfrage. Wir müssen zusätzliche Anpassungen für Dinge wie Trend lag, Saisonalität, bekannte Ereignisse, die die Nachfrage beeinflussen können, etc. Aber alle, die über den Rahmen dieses Artikels. Sie werden wahrscheinlich auch in Begriffe wie double-exponentielle Glättung und Triple-exponentielle Glättung. Diese Begriffe sind ein wenig irreführend, da Sie nicht re-Glättung der Nachfrage mehrfach (Sie könnten, wenn Sie wollen, aber das ist nicht der Punkt hier). Diese Begriffe repräsentieren die Verwendung einer exponentiellen Glättung für zusätzliche Elemente der Prognose. Also mit einfacher exponentieller Glättung glätten Sie die Grundanforderung, aber mit doppelt-exponentieller Glättung glätten Sie die Grundanforderung plus den Trend und mit dreifach-exponentieller Glättung glätten Sie die Grundanforderung plus Trend und Saisonalität. Die andere am häufigsten gestellte Frage über exponentielle Glättung ist, wo bekomme ich meinen Glättungsfaktor Es gibt keine magische Antwort hier, müssen Sie verschiedene Glättungsfaktoren mit Ihren Nachfrage Daten testen, um zu sehen, was Ihnen die besten Ergebnisse zu testen. Es gibt Berechnungen, die den Glättungsfaktor automatisch einstellen (und ändern) können. Diese fallen unter den Begriff adaptive Glättung, aber Sie müssen vorsichtig mit ihnen sein. Es gibt einfach keine perfekte Antwort und Sie sollten nicht blind implementieren keine Berechnung ohne gründliche Prüfung und Entwicklung eines gründlichen Verständnis dessen, was die Berechnung tut. Sie sollten auch What-If-Szenarien ausführen, um zu sehen, wie diese Berechnungen auf Bedarfsänderungen reagieren, die möglicherweise nicht in den Bedarfsdaten vorhanden sind, die Sie für Tests verwenden. Das Datenbeispiel, das ich vorher verwendet habe, ist ein sehr gutes Beispiel für eine Situation, in der Sie wirklich einige andere Szenarien testen müssen. Dieses besondere Datenbeispiel zeigt einen etwas konsequenten Aufwärtstrend. Viele große Unternehmen mit sehr teuren Prognose-Software bekam in großen Schwierigkeiten in der nicht so fernen Vergangenheit, wenn ihre Software-Einstellungen, die für eine wachsende Wirtschaft gezwickt wurden nicht gut reagiert, wenn die Wirtschaft begann stagnieren oder schrumpfen. Dinge wie dieses passieren, wenn Sie nicht verstehen, was Ihre Berechnungen (Software) tatsächlich tun. Wenn sie ihr Prognosesystem verstanden, hätten sie gewußt, daß sie nötig waren, um zu springen und etwas zu ändern, als plötzliche dramatische Veränderungen an ihrem Geschäft auftraten. So dort haben Sie es die Grundlagen der exponentiellen Glättung erklärt. Wollen Sie mehr über die Verwendung exponentieller Glättung in einer aktuellen Prognose wissen, lesen Sie in meinem Buch Inventory Management Explained. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. Dave Piasecki. Ist Eigentümer / Betreiber von Inventory Operations Consulting LLC. Ein Beratungsunternehmen, das Dienstleistungen im Zusammenhang mit Bestandsführung, Materialhandling und Lagerbetrieb anbietet. Er hat über 25 Jahre Erfahrung in der Betriebsführung und kann über seine Website (www. inventoryops) erreicht werden, wo er zusätzliche relevante Informationen unterhält. My BusinessEMA 8211 Wie man es berechnet Berechnen Exponential Moving Average - ein Tutorial Exponential Moving Average (kurz EMA) ist einer der am meisten verwendeten Indikatoren in der technischen Analyse heute. Aber wie berechnen Sie es für sich selbst, mit einem Papier und einem Stift oder 8211 bevorzugt 8211 ein Tabellenkalkulationsprogramm Ihrer Wahl. Läßt Sie herausfinden, in dieser Erklärung der EMA Berechnung. Die Berechnung von Exponential Moving Average (EMA) wird natürlich automatisch von den meisten Trading-und technische Analyse-Software da draußen heute. Hier ist, wie man es manuell berechnen, die auch das Verständnis auf, wie es funktioniert. In diesem Beispiel berechnen wir die EMA für den Preis einer Aktie. Wir wollen eine 22 Tage EMA, die eine gemeinsame Zeitrahmen für eine lange EMA ist. Die Formel für die Berechnung von EMA ist wie folgt: EMA (y) (1 8211 k) t heute, y gestern, N Anzahl Tage in EMA, k 2 / (N1) Verwenden Sie die folgenden Schritte, um a zu berechnen 22 Tage EMA: 1) Beginnen Sie mit der Berechnung von k für den angegebenen Zeitrahmen. 2) (22 1) 0,0869 2) Fügen Sie die Schlusspreise für die ersten 22 Tage zusammen und teilen Sie sie durch 22. 3) Sie sind nun bereit, den ersten EMA-Tag zu erhalten, indem Sie den folgenden Tag (Tag 23) Schlusskurs Multipliziert mit k. Dann multiplizieren Sie die vorherigen Tage gleitenden Durchschnitt durch (1-k) und fügen Sie die beiden. 4) Machen Sie Schritt 3 über und über für jeden Tag, der folgt, um das gesamte Spektrum der EMA zu erhalten. Dies kann natürlich in Excel oder einige andere Kalkulationstabellen-Software, um den Prozess der Berechnung von EMA halbautomatischen gesetzt werden. Um Ihnen einen algorithmischen Überblick zu geben, wie dies erreicht werden kann, siehe unten. public float CalculateEMA (float todaysPrice, float numberOfDays, float EMAYesterday) float k 2 / (numberOfDays 1) return todaysPrice k EMAYesterday (1 8211 k) Diese Methode der Regel aus einer Schleife durch Ihre Daten aufgerufen werden würde, so etwas wie folgt aussehen: foreach ( DailyRecord sdr in data) // Aufruf der EMA Berechnung ema CalculateEMA (sdr. Close, numberOfDays, yesterdayEMA) // die berechnete ema in einem Array setzen memaSeries. Items. Add (sdr. TradingDate, ema) // stellen Sie sicher, yesterdayEMA gefüllt wird Mit der EMA wir diese Zeit um yesterdayEMA ema verwendet. Beachten Sie, dass dies psuedo-Code ist. Sie müssten normalerweise die gestern SCHLIEßEN Wert als yesterdayEMA zu senden, bis die yesterdayEMA von der heutigen EMA berechnet wird. Das ist, geschieht erst, nachdem die Schleife mehr Tage als die Anzahl der Tage ausgeführt wurde Sie Ihre EMA für berechnet. Für ein 22 Tage EMA, seine nur auf die 23 Zeit in der Schleife und danach die yesterdayEMA ema gültig ist. Dies ist keine große Sache, da Sie Daten von mindestens 100 Handelstage für einen 22 Tage-EMA müssen gültig sein. Der exponentielle gleitende Durchschnitt (EMA) ist ein gewichteter gleitender Durchschnitt (WMA), der den aktuellen Preisdaten mehr Gewichtung oder Bedeutung verleiht als der einfache gleitende Durchschnitt SMA) nicht. Die EMA reagiert schneller auf die jüngsten Preisänderungen als die SMA. Die Formel für die Berechnung der EMA beinhaltet nur die Verwendung eines Multiplikators und beginnend mit dem SMA. Die Berechnung für die SMA ist sehr einfach. Die SMA für eine gegebene Anzahl von Zeitperioden ist einfach die Summe der Schlusskurse für diese Anzahl von Zeitperioden, geteilt durch dieselbe Zahl. So ist beispielsweise eine 10-tägige SMA nur die Summe der Schlusskurse der letzten 10 Tage, geteilt durch 10. Die drei Schritte zur Berechnung der EMA sind: Berechnen Sie die SMA. Berechnen Sie den Multiplikator für die Gewichtung der EMA. Berechnen Sie die aktuelle EMA. Die mathematische Formel, in diesem Fall für die Berechnung einer 10-Perioden-EMA, sieht so aus: SMA: 10 Periodensumme / 10 Berechnung des Gewichtungsmultiplikators: (2 / (ausgewählter Zeitraum 1)) (2 / (10 1)) 0,1818 (18.18) Berechnung des EMA: (Schlusskurs-EMA (Vortag)) x Multiplikator EMA (Vortag) Die Gewichtung des jüngsten Preises ist für einen kürzeren Zeitraum höher als für einen längeren Zeitraum EMA. Beispielsweise wird ein 18,18-Multiplikator auf die jüngsten Preisdaten für eine 10 EMA angewendet, während für eine 20 EMA nur eine 9,52-Multiplikator-Gewichtung verwendet wird. Es gibt auch leichte Variationen der EMA angekommen, indem Sie den offenen, hohen, niedrigen oder mittleren Preis anstelle der Verwendung der Schlusskurs. Verwenden Sie den exponentiellen gleitenden Durchschnitt (EMA), um eine dynamische Forex-Handelsstrategie zu erstellen. Erfahren Sie, wie EMAs sehr genutzt werden können. Read Answer Lernen Sie die wichtigen potenziellen Vorteile der Verwendung eines exponentiellen gleitenden Durchschnitt beim Trading, anstatt einer einfachen Bewegung. Read Answer Erfahren Sie mehr über einfache gleitende Durchschnitte und exponentielle gleitende Durchschnitte, was diese technischen Indikatoren messen und den Unterschied. Read Answer Erfahren Sie die Formel für die gleitende durchschnittliche Konvergenz Divergenz Momentum Indikator und finden Sie heraus, wie die MACD zu berechnen. Antwort lesen Entdecken Sie die primären Unterschiede zwischen exponentiellen und einfachen gleitenden durchschnittlichen Indikatoren, und welche Nachteile EMAs können. Read Answer Erfahren Sie über verschiedene Arten von gleitenden Durchschnitten, sowie gleitende durchschnittliche Crossover und zu verstehen, wie sie verwendet werden. Lesen Sie Antwort Exponential Moving Average - EMA Laden des Players. BREAKING DOWN Exponential Moving Average - EMA Die 12- und 26-Tage-EMAs sind die beliebtesten Kurzzeitmittelwerte und werden verwendet, um Indikatoren wie die gleitende durchschnittliche Konvergenzdivergenz (MACD) und den prozentualen Preisoszillator (PPO) zu erzeugen. Im Allgemeinen werden die 50- und 200-Tage-EMAs als Signale von langfristigen Trends verwendet. Trader, die technische Analyse verwenden finden fließende Mittelwerte sehr nützlich und aufschlussreich, wenn sie richtig angewendet werden, aber Chaos verursachen, wenn sie falsch verwendet werden oder falsch interpretiert werden. Alle gleitenden Durchschnitte, die gewöhnlich in der technischen Analyse verwendet werden, sind von Natur aus nacheilende Indikatoren. Folglich sollten die Schlussfolgerungen aus der Anwendung eines gleitenden Durchschnitts auf ein bestimmtes Marktdiagramm eine Marktbewegung bestätigen oder ihre Stärke belegen. Sehr oft, bis eine gleitende durchschnittliche Indikatorlinie eine Änderung vorgenommen hat, um eine bedeutende Bewegung auf dem Markt zu reflektieren, ist der optimale Punkt des Markteintritts bereits vergangen. Eine EMA dient dazu, dieses Dilemma zu einem gewissen Grad zu lindern. Da die EMA-Berechnung mehr Gewicht auf die neuesten Daten setzt, umgibt sie die Preisaktion etwas fester und reagiert damit schneller. Dies ist wünschenswert, wenn ein EMA verwendet wird, um ein Handelseintragungssignal abzuleiten. Interpretation der EMA Wie alle gleitenden Durchschnittsindikatoren sind sie für Trendmärkte viel besser geeignet. Wenn der Markt in einem starken und anhaltenden Aufwärtstrend ist. Zeigt die EMA-Indikatorlinie auch einen Aufwärtstrend und umgekehrt einen Abwärtstrend. Ein wachsamer Händler achtet nicht nur auf die Richtung der EMA-Linie, sondern auch auf das Verhältnis der Änderungsgeschwindigkeit von einem Balken zum nächsten. Wenn zum Beispiel die Preisaktion eines starken Aufwärtstrends beginnt, sich zu verflachen und umzukehren, wird die EMA-Rate der Änderung von einem Balken zum nächsten abnehmen, bis zu dem Zeitpunkt, zu dem die Indikatorlinie flacht und die Änderungsrate null ist. Wegen der nacheilenden Wirkung, von diesem Punkt, oder sogar ein paar Takte zuvor, sollte die Preisaktion bereits umgekehrt haben. Daraus folgt, dass die Beobachtung eines konsequenten Abschwächens der Veränderungsrate der EMA selbst als Indikator genutzt werden könnte, der das Dilemma, das durch den nacheilenden Effekt von gleitenden Durchschnittswerten verursacht wird, weiter beheben könnte. Gemeinsame Verwendung der EMA-EMAs werden häufig in Verbindung mit anderen Indikatoren verwendet, um signifikante Marktbewegungen zu bestätigen und deren Gültigkeit zu messen. Für Händler, die intraday und schnelllebigen Märkten handeln, ist die EMA mehr anwendbar. Häufig benutzen Händler EMAs, um eine Handel Bias zu bestimmen. Zum Beispiel, wenn eine EMA auf einem Tages-Chart zeigt einen starken Aufwärtstrend, eine Intraday-Trader-Strategie kann nur von der langen Seite auf einem Intraday-Diagramm handeln.
No comments:
Post a Comment